L₁ Norm Based Data Analysis and Related Methods

(1632-1989)

Bijan Bidabad¹

Keywords: L₁ norm, Regression, Algorithm, Computer

Abstract:
This paper gives a rather general view on the L₁ norm criterion on the area of data analysis and related topics. We tried to cover all aspects of mathematical properties, historical development, computational algorithms, simultaneous equations estimation, statistical modeling, and application of the L₁ norm in different fields of sciences.

1. Introduction
2. L_p norm and regression analysis
3. Properties of the L₁ norm estimation
 3.1 Invariance property
 3.2 Transformation of variables
 3.3 convexity of the objective function
 3.4 Zero residuals in optimal solution
 3.5 Optimality condition
 3.6 Unique and non-unique solutions
 3.7 Interior and sensitivity analysis
4. Chronology and historical development (1632-1928)
5. Computational algorithms
 5.1 Direct descent algorithms
 5.2 Simplex type algorithms
 5.3 Other algorithms
 5.4 Initial value problem
 5.5 Computer programs and packages
 5.6 Comparison of the algorithms
 5.7 Nonlinear form computational methods
 5.8 L_p norm computation
6. Simultaneous equations system
7. Statistical aspects
 7.1 Sampling distribution
 7.2 Statistical inference
 7.3 Multivariate statistics
 7.4 Nonparametric density estimation
 7.5 Robust statistics
8. Application
9. Other variants
10. Bibliography

¹ Research professor of economics, Monetary and Banking Research Academy, Central Bank of Iran, Pasdaran, Zarabkhaneh, Tehran, 16619, Iran. bijan_bidabad@msn.com.
I should express my sincere thanks to Professor Yadolah Dodge from Neuchatel University of Switzerland who taught me many things about L₁ norm when he was my Ph.D.dissertation advisor.
Although the L_1 norm is an old topic in science, but lack of a general book or paper on this subject induced me to gather a relatively complete list of references in this paper. The methods related to L_1 norm are very broad and summarizing them is very difficult. However, it has been tried to have a glance on almost all related areas. The sections are designed as separate modules, so that the reader may skip some of the sections without loss of continuity of the subject.

While the least squares method of estimation of the regression parameters is the most commonly used procedure, some alternative techniques have received widespread attention in recent years. Conventionally, interest in other methods of estimation has been generated by the unsatisfactory performance of least squares estimators in certain situations when some model assumptions fail to hold or when large correlations exist among the regressors. However, the least squares regression is very far from optimal in many non-Gaussian situations, especially when the errors follow distributions with longer tails. In particular, when the variance of the error is infinite. While intuition may dispel consideration of errors with infinite variance, in many cases, studies have shown that, in fact, certain distributions with infinite variances may be quite appropriate models. An infinite variance means thick tail error distribution with lots of outliers. Of course, observed distributions of economic variables will never display infinite variances. However, the important issue is not that the second moment is actually infinite, but the interdecile range in relation to interquartile range is sufficiently large that one is justified in acting as though the variance is infinite. Even when the majority of the errors in the model follow a normal distribution, it often occurs that a small number of observations are from a different distribution. That is the sample is contaminated with outliers. Since least squares gives a lot of weight to outliers, it becomes extremely sample dependent and it is well known that the performance of this estimator is markedly degraded in this situation. It has been stated that even when errors follow a normal distribution, alternative to least squares may be required; especially if the form of the model is not exactly known or any other specification error exists. Further, least squares is not very satisfactory if the quadratic loss function is not a satisfactory measure of loss. Loss denotes the seriousness of the nonzero prediction error to the investigator, where prediction error is the difference between the predicted and the observed values of the response variable. It has been shown that for certain economic problems least absolute errors gives more satisfactory results than least squares, because the former is less sensitive than the latter to extreme errors, and consequently is resistant to outliers. It should be noted that the least absolute errors estimates have maximum likelihood properties and hence are asymptotically efficient when the errors follow the Laplace distribution.

Although least absolute errors estimator is very old, it has emerged in the literature again and has attracted attention in the last two decades because of unsatisfactory properties of least squares. Now, this method is discussed in the econometrics textbooks such as Kmenta (1986) and Maddala (1977). Many Master's and Ph.D dissertations have been written on this subject in different departments such as Lawson (1961), Burgoine (1965), Gentleman (1965), Barrodale (1967), Oveson (1968), Lewis (1969), Cline (1970), Hunt (1970), Groucher (1971), Henriksson (1972), Bassett (1973), Forth (1974), Anderson (1975), Ronner (1977), Nyquist (1980), Clarke (1981), Kotiuga (1981), Gonin (1983), Busovaca (1985), Kim (), Bidabad (1989a,b) which are more recent (see bibliography for the corresponding departments and universities).

Robust property of this estimator is its advantage to deal with large variance error distributions. Since many economic phenomena such as distribution of personal income, security returns, speculative prices, stock and commodity prices, employment, asset size of business firms, demand equations, interest rate, treasury cash flows, insurance, price expectations, and many other economic variables fall within the category of infinite variance (see, Ganger and Orr (1972), Nyquist and Westlund (1977), Fama (1965), Goldfeld and Quandt (1981), Sharpe (1971)) it is necessary to turn the economists attention to this estimator. There are many other works which confirm the superiority of least absolute to least squares estimator such as interindustry demand analysis of Arrow and Hoffenberg (1959), investment models of Meyer and Glauber (1964), security and portfolios analysis of Sharpe (1971), Danish investment analysis of Kaergard (1987) and so forth.

Many new economic theories weaken the assumption of rationality of human behavior. This relative irrationality is a major source of large variances and outliers in economic data. Therefore the
least absolute errors estimator becomes a relevant estimator in the cases that rationality is a strong assumption.

Another major application of this estimator is on data with measurement errors. This type of errors makes variances large and forces the observations to locate far from reality which obviously causes outliers. Existence of two important types of measurement errors, sampling and non sampling errors, specifically in countries with poor statistics such as developing countries make this estimator a basic tool of analysis.

Unknown specification errors in regression models because of complexity of human behavior are always occurred in mathematical formulation of human related problems. Specification error occurs whenever formulation of the regression equation or one of the underlying assumptions is incorrect. In this context when any assumption of the underlying theory or the formulation of the model does not hold, a relevant explanatory variable is omitted or an irrelevant one is included, qualitative change of the explanatory variable is disregarded, incorrect mathematical form of the regression is adopted, or incorrect specification of the way in which the disturbance enters the regression equation is used and so on; specification error exits (see also, Kmenta (1986)). Since specification errors are not always clear to researcher, least squares is a poor estimator and other alternatives as least absolute errors estimators become attractive.

Although least absolute errors estimator benefits from optimal properties in many econometric problems, it is not a commonly used tool. This is to some extent due to difficulties of calculus with absolute value functions. When the model is enlarged and equations enter simultaneously, difficulties of computation increase. Another problem with this estimator is that the properties of the solution space is not completely clear and the corresponding closed form of the solution have not been derived yet.

Thus these three important problems of algebraic closed form, computational difficulties and solution space properties are the main obstacles that prevent the regular use of L1 norm estimator. Any attempt to remove these obstacles are worthy.

2. \(L_p \) norm and regression analysis

Given a point \(\mathbf{u}=(u_1,\ldots,u_n) \) in \(\mathbb{R}^n \), Minkowski norm or \(L_p \) norm can be written as the following expression,

\[
\| \mathbf{u} \|_p = d_p(\mathbf{u}, \mathbf{0}) = \left[\sum_{i=1}^{n} |u_i|^p \right]^{1/p} \tag{1}
\]

When \(p=2 \) we are confronted with Euclidian or \(L_2 \) norm. Thus, Euclidian distance is a special case of \(L_p \) distance (see, Ralston and Rabinowitz (1985)).

The following overdetermined system of equations is given,

\[
y = \mathbf{X}\mathbf{\beta} + \mathbf{u} \tag{2}
\]

where, \(y \) is a nx1 vector of dependent variables, \(\mathbf{X} \), a nxm matrix of independent or explanatory variables with \(n>m \), \(\mathbf{\beta} \), a mx1 vector of unknown parameters and \(\mathbf{u} \) is a nx1 vector of random errors. The problem is to find the unknown vector \(\mathbf{\beta} \) such that the estimated value of \(y \) be close to its observed value. A class of procedures which obtains these estimated values is \(L_p \) norm minimization criterion (see, Narula (1982)). In this class \(\| \mathbf{u} \|_p \) is minimized to find the \(\mathbf{\beta} \) vector,

\[
\min S = \min \sum_{i=1}^{n} |y_i-\mathbf{x}_i\mathbf{\beta}|^p = \min \sum_{i=1}^{n} |y_i-\sum_{j=1}^{m} \beta_jx_{ij}|^p \Rightarrow \min \sum_{i=1}^{n} |y_i-\sum_{j=1}^{m} \beta_jx_{ij}|^p \tag{3}
\]

\[
\min \sum_{i=1}^{n} \sum_{j=1}^{n} |y_i-\sum_{j=1}^{n} \beta_jx_{ij}|^p
\]
where \(y_i \) is the \(i \)th element of \(y \) and \(x_i \) is the \(i \)th row of the matrix \(X \). Any value of \(p \in [1, \infty) \) may be used to find \(\beta \) in (3) (see, Money et al (1978a), Rice (1933)), but each value of \(p \) is relevant for special types of error distributions. Many authors have investigated this problem (see, Barrodale (1968), Barr et al (1980a,b,c,81a,b), Money et al (1978b,82), Gonin and Money (1985a,b), Sposito and Hand (1980), Sposito and Hand and Skarpness (1983), Sposito (1987b)). However, justification of \(p \) comes from the following theorem (see, Kiountouzis (1971), Rice and White (1964), Hogan (1976), Taguchi (1974,78)).

Theorem: If in model (2), \(X \) is nonstochastic and \(\mathbb{E}(u) = 0, \mathbb{E}(uu^T) = \sigma^2 I \), and \(u \) distributed with
\[
f(u) = h. \exp(-k |u|^p),
\]
where \(h \) and \(k \) are constants and \(p \in [1, \infty) \); then the "best" \(\beta \) with maximum likelihood properties is a vector which comes from minimization of (3).

Certain values of \(p \) have particular importances (see, Box and Tiao (1962), Theil (1965), Anscombe (1967), Zeckhauser and Thompson (1970), Blattberg and Sargent (1971), Kadiyala (1972), Maddala (1977)). \(L_1 \) norm minimization of (3) is called Tchebyshev or uniform norm minimization or minimum maximum deviations and has the maximum likelihood properties when \(u \) has a uniform probability distribution function. When \(p=2 \) we are confronted with least squares method. In this case if the errors distribution is normal it is the best unbiased estimator (see, Anderson (1962), Theil (1971)). When \(p=1 \), we have \(L_1 \) norm or Gershgorin norm minimization problem. It is also called least or minimum sum of absolute errors (MSAE, LSAE), minimum or least absolute deviations, errors, residuals, or values (MAD, MAE, MAR, MAV, LAD, LAE, LAR, LAV), \(L_1 \) norm fit, approximation, regression or estimation.

Harter (1974a,b,75a,b,c,76) monumental papers provide a chronology of works on nearly all the estimators which includes \(L_1 \) norm estimation too. A concise review of data analysis based on the \(L_1 \) norm is presented by Dodge (1987) and a brief discussion is given by Gentle (1977) too. Narula and Wellington (1982) and Narula (1987) give a brief and concise presentation of \(L_1 \) norm regression.

Blattberg and Sargent (1971) show that if the errors of the regression follow the second law of Laplace (two-tailed exponential distribution) with probability density function
\[
f(u) = (1/2 \theta). \exp(-|u|/\theta),
\]
where \(\text{var}(u) = 2 \theta^2 \), then \(L_1 \) norm minimization leads to maximum likelihood estimator.

3. Properties of the \(L_1 \) norm estimation

Similar to other criteria, the \(L_1 \) norm estimation has its own properties which are essential in computational and statistical viewpoints. The more important properties are as follows.

3.1 Invariance property

An estimator \(\hat{\beta}(y,X) \) of population parameter \(\beta \) is invariant if,
\[
\hat{\beta}(\theta y, X) = \theta \hat{\beta}(y, X), \quad \theta \in [0, \infty)
\]
Gentle and Sposito (1976), Koenker and Bassett (1978) have proved that the \(L_p \) norm estimator of \(\beta \) is invariant when the regression model is linear. The \(L_p \) norm estimator is not invariant for general nonlinear models. The invariance property is the homogeneity of degree one of the \(\hat{\beta} \) solution function.

3.2 Transformation of variables

If \(\theta \in \mathbb{R}^m \), by transforming \(y \) to \(y+X\theta \) the optimal value of \(\hat{\beta} \) will increase by \(\theta \), (see, Koenker and Bassett (1978));
\[
\hat{\beta}(y+X\theta, X) = \hat{\beta}(y, X) + \theta
\]
If \(A \) is a mxm nonsingular matrix, transformation of \(X \) to \(AX \) premultiplies optimal \(\hat{\beta} \) by inverse of \(A \) (see, Taylor (1974), Koenker and Bassett (1978), Bassett and Koenker (1978)).
\[
\hat{\beta}(y, AX) = A^{-1} \hat{\beta}(y, X)
\]

3.3 convexity of the objective function

To show the convexity of \(S \) in (3), suppose \(m=1 \); the objective function (3) reduces to

\[
S(\beta) = \sum |y_i - x_i^T \beta|
\]
\[S_i = \sum_{i=1}^{n} \left| y_i - \beta_1 x_{i1} \right| \]

where \(S_i = \sum_{i=1}^{n} \left| y_i - \beta_1 x_{i1} \right| \). If we plot \(S_i \) as a function of \(\beta_1 \) then we will have a broken line in \(S \times \beta_1 \) plane and its function value is zero at \(\beta_{1i} = \frac{y_i}{x_{i1}} \). The slope of the half-lines to the left and right of \(\beta_{1i} \) are \(-\frac{x_{i1}}{y_i} \) and \(\frac{x_{i1}}{y_i} \) respectively. So, \(S_i \)'s are all convex and hence their sum \(S \) is also convex with slope at any \(\beta_1 \) equal to the sum of the slopes of the \(S_i \)'s at that value of \(\beta_1 \) (see, Karst (1958), Taylor (1974)).

Consider now (3) when \(m=2 \),

\[S = \sum_{i=1}^{n} \left| y_i - \beta_1 x_{i1} - \beta_2 x_{i2} \right| = \sum_{i=1}^{n} S_i \]

Where \(S_i = \sum_{i=1}^{n} \left| y_i - \beta_1 x_{i1} - \beta_2 x_{i2} \right| \). We may plot \(S_i \) as a function of \(\beta_1 \) and \(\beta_2 \). Every \(S_i \) is composed of two half planes in \(S \times \beta_1 \times \beta_2 \) space that intersect in the \(\beta_1 \times \beta_2 \) plane. Thus \(S_i \) is convex downward which its minimum locates on the intersection of the two half-planes. Since \(S_i \)'s are all convex, their sum \(S \) surface is convex too. Extension to \(m \) independent variables is straightforward. In this case each \(S_i \) consists of two \(m \) dimensional half- hyperplanes in \(S \times \beta_1 \times \ldots \times \beta_m \) space intersecting in the \(\beta_1 \times \ldots \times \beta_m \) hyperplane, and as before is convex in the opposite direction of the \(S \) axis. \(S \), which is the sum of all these half-hyperplanes forms a polyhedronal hypersurface which is convex too.

3.4 Zero residuals in optimal solution

\(L_1 \) norm regression hyperplane always passes through \(r \) of thy \(n \) data points, where \(r \) is rank of the \(X \) matrix. Usually \(X \) is of full rank and thus \(r \) is equal to \(m \). So, for number of parameters there exist zero residuals for the minimal solution of (3). This implies that \(L_1 \) norm regression hyperplane must pass through \(m \) observation points (see, Karst (1959), Taylor (1974), Money et al (1978), Appa and Smith (1973), Gentle and Sposito and Kennedy (1977)).

This phenomenon is because of the polyhedral shape of the \(S \). It is obvious that the minimum solution occurs on at least one of the corners of \(S \), and the corners of \(S \) are the loci of changes in slopes of the polygonal hypersurface. Note that these corners and also edges of \(S \) will be above the intersections of \(m \) subset of the following \(n \) hyperplanes.

\[y_i - \sum_{j=1}^{m} \beta_j x_{ij} = 0 \quad i \in \{1, \ldots, n\} \]

Since each of these hyperplanes corresponds to a particular \(m \) subset of observations, there will be \(m \) observations that lie on the regression hyperplane (see, Taylor (1974)).

3.5 Optimality condition

This condition is derived from the Kuhn-Tucker necessary condition of nonlinear programming and proved by Gonin and Monpy (1987b) and Charalambous (1979). Define \(A = \{i \mid y_i - x_i \beta^* = 0\} \) and \(I = \{i \mid y_i - x_i \beta^* \neq 0\} \); in linear \(L_1 \) norm regression, a necessary and sufficient condition for \(\beta^* \) to be a global \(L_1 \) norm solution is the existence of multipliers \(\alpha_i \in [-1,1] \) such that:

\[\sum_{i \in A} \alpha_i x_i + \sum_{i \in I} \text{sgn}(y_i - x_i \beta^*) x_i = 0 \]

(11)

(see also, El-Attar and Vidyasagar and Dutta (1976). Appa and Smith (1973) showed that this solution is a hyperplane such that:

\[|n^+ - n^-| \leq m \]

(12)

where \(n^+ \) and \(n^- \) are the number of observations above and below the regression hyperplane respectively.
3.6 Unique and non-unique solutions

Since S is a convex polyhedronal hypersurface, it always has a minimum. This solution is often unique. Sometimes the shape of S is such that a line or a closed polygon or polyhedron or hyperpolyhedron segment of S is parallel to $\beta_1 x_1 \ldots \beta_m$ hyperplane. On this case the L_1 norm regression parameters are not unique and infinite points of the mentioned hyperpolyhedron are all solutions (see, Moroney (1961), Sielken and Hartley (1973), Taylor (1974), Farebrother (1985), Sposito (1982), Harter (1977)).

3.7 Interior and sensitivity analysis

Narula and Wellington (1985) showed that the L_1 norm estimates may not be affected by certain data points. Thus deleting those points does not change the estimated values of the regression parameters. In another discussion, they called sensitivity of L_1 norm estimates, determined the amounts by which the value of response variable y_i can be changed before the parameters estimates are affected. Specifically, if value of y_i increases or decreases without changing the sign of u_i, the solution of the parameters will not change (see, Gauss (1809), Farebrother (1987b)).

4. Chronology and historical development (1632-1928)

The origin of L_1 norm estimation may be traced back to Galilei (1632). In determining the position of a newly discovered star, he proposed the least possible correction in order to obtain a reliable result (see, Ronchetti (1987) for some direct quotations). Boscovich (1757) for the first time formulated and applied the minimum sum of absolute errors for obtaining the best fitting line given three or more pairs of observations for a simple two variable regression model. He also restricts the line to pass through the means of the observation points. That is,

\[
\begin{align*}
\min_{\beta_0, \beta_1} & \quad \sum_{i=1}^{n} |y_i - \beta_0 - \beta_1 x_i| \\
\text{s.to.} & \quad \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) = 0
\end{align*}
\]

(13)

Boscovich (1760) gives a simple geometrical solution to his previous suggestion. This paper has been discussed by Eisenhart (1961) and Sheynin (1973). In a manuscript Boscovich poses the problem to Simpson and Simpson gives an analytical solution to the problem (see, Stigler (1984)).

Laplace (1773) provides an algebraic formulation of an algorithm for the L_1 norm regression line which passes through the centroid of observations. In Laplace (1779), extension of L_1 norm regression to observations with different weights has also been discussed. Prony (1804) gives a geometric interpretation of Laplace's (1779) method and compares it with other methods through an example. Svanberg (1805) applies Laplace's method in determining a meridian arc and Von Lindenau (1806) uses this method in determination of the elliptic meridian.

Gauss (1809) suggests the minimization of sum of absolute errors without constraint. He concludes that this criterion necessarily sets m of the residuals equal to zero, where m is number of parameters and further, the solution obtained by this method is not changed if the value of dependent variable is increased or decreased without changing the sign of the residual. This conclusion, is recently discussed by Narula and Wellington (1985) which explained in previous section under the subject of interior and sensitivity analysis. He also noted that Boscovich or Laplace estimators which minimize the sum of absolute residuals with zero sum of residuals constraint, necessarily set m-1 of the residuals equal to zero (see, Stigler (1981), Farebrother (1987b)).
Mathieu (1816) used Laplace's method to compute the eccentricity of the earth. Van Beeck-Calkoen (1816) advocates the using of the least absolute values criterion in fitting curvilinear equation obtained by using powers of the independent variable.

Laplace (1818) adapted Boscovich's criterion again and gave an algebraic procedure (see, Farebrother (1987b)). Let x_1^* and y^* be the means of x_i and y_i then,

$$\beta_0 = y^* - \beta_1 x_1^*$$ \hspace{1cm} (14)

Value of β_1 is found by,

$$\min_{\beta_1} S = \sum_{i=1}^{n} |y_i^- - \beta_1 x_i^+|$$ \hspace{1cm} (15)

where, x_i^+ and y_i^- are deviations of x_i and y_i from these means respectively. By rearranging the observations in descending order of y_i^-/x_i^+ values, Laplace notes that S is infinite when β_1 is infinite and decreases as β_1 is reduced. β_1 reaches the critical value y_t^-/x_t^+ when it again begins to increase. This critical value of β_1 is determined when,

$$\sum_{i=1}^{t-1} x_i^+ < \frac{1}{2} \sum_{i=1}^{n} x_i^+ \leq \sum_{i=1}^{t} x_i^+$$ \hspace{1cm} (16)

This procedure to find β_1 is called weighted median, and has been used in many other algorithms such as Rhodes (1930), Singleton (1940), Karst (1958), Bloomfield and Steiger (1980), Bidabad (1987a,b,88a,b) later. Bidabad (1987a,b,88a,b) derives the condition (16) via discrete differentiation method.

Fourier (1824) formulates least absolute residuals regression as what we would now call linear programming; that is minimization of a linear objective function subject to linear inequality constraints.

Edgeworth (1883) presents a philosophical discussion on differences between minimizing mean square errors and mean absolute errors. Edgeworth (1887a,b) proposed a simple method for choosing the regression parameters. By fixing $m-1$ of the parameters, he used Laplace's procedure to determine the optimal value of the remaining parameter. Repeating this operation for a range of values for $m-1$ fixed parameters he obtained a set of results for each of m possible choices of the free parameters. Edgeworth drops the restriction of passing through the centroid of data. Turner (1887) discusses the problem of non unique solutions under the least absolute error criterion as a graphical variant of Edgeworth (1887a) as a possible drawback to the method. Edgeworth (1888) replies to Turner's criticism by proposing a second method for choosing the two parameters of least absolute error regression of a simple linear model which makes no use of the median loci of his first method. Edgeworth, in this paper, followed Turner's suggestion for graphical analysis of steps to reach the minimum solution.

Before referring to double median method of Edgeworth (1923), it should be noted that Bowley (1902) completes the Edgeworth's (1902) paper by a variant of double median method which presented after him by Edgeworth (1923). This variant ignores the weights attached to errors.

Edgeworth (1923) discussed the more general problem of estimating the simple linear regression parameters by minimizing the weighted sum of the absolute residuals. He restates the rationale for the method and illustrates its usage through several examples. He also considers the non unique solution problem. His contribution is called double median method.

Estienne (1926-28) proposes replacing the classical theory of errors of data based on least squares with what he calls a rational theory based on the least absolute residual procedure. Bowley (1928) summarizes the Edgeworth's contributions to mathematical statistics which includes his work on L_1 norm regression. Dufton (1928) also gives a graphical method of fitting a regression line.

Farebrother (1987b) summarizes the important contributions to L_1 norm regression for the period of 1793-1930. For more references see also Crocker (1969), Harter (1974a,b,75a,b,c,76), Dielman (1984).
Up to 1928, all algorithms had been proposed for simple linear regression. Though some of them use algebraic propositions, are not so organized to handle multiple L_1 norm regression problem. In the next section we will discuss the more elaborated computational methods for simple and multiple L_1 norm regressions not in a chronological sense; because many digressions have been occurred. We may denote the period of after 1928 the time of modern algorithms in the subject of L_1 norm regression.

5. Computational algorithms

Although, a closed form of the solution of L_1 norm regression has not been derived yet, many algorithms have been proposed to minimize its objective function (see, Cheney (1966), Chambers (1977), Dielman and Pfaffenberger (1982,84)). Generally, we can classify all L_1 norm algorithms in three major categories as, direct descent algorithms, simplex type algorithms and other algorithms which will be discussed in the following sections sequentially.

5.1 Direct descent algorithms

The essence of the algorithms which fall within this category is finding an steep path to descend down the polyhedron of the L_1 norm regression objective function. Although the Laplace's method (explained herein before) is a special type of direct descent algorithms; origin of this procedure in the area of L_1 norm can be traced back to the algorithms of Edgeworth which were explained in the previous section.

Rhodes (1930) found Edgeworth's graphical solution laborious, therefore, he suggested an alternative method for general linear model which may be summarized as follows (see, Farebrother (1987b)). Suppose, we have n equations with $m<n$ unknown parameters. To find L_1 norm solution of this overdetermined system of equations he tries to reduce the m parameter model to a weighted median one parameter problem by solving $m-1$ of n equations (see also Bidabad (1989a,b)). Rhodes (1930) explained his algorithm by an example and did not give any proof for convergence. Bruen (1938) reviews the L_1 norm regression methods presented by earlier authors. He also compares L_1, L_2 and L_∞ norms regressions.

Singleton (1940) applied Cauchy's steepest descent method (see, Panik (1976)) for the general linear L_1 norm regression. In this paper a geometrical interpretation of gradient on L_1 norm polyhedron and some theorems about existence and uniqueness of solution and convexity property all were given. This paper has not been clearly written, for discussion of the algorithm see Bidabad (1989a,b).

Bejar (1956,57) focuses on consideration of residuals rather than on the vector of parameters. He puts forth a procedure with the essence of Rhodes (1930). However, he is concerned with two and three parameter linear models.

Karst (1958) gives an expository paper for one and two parameter regression models. In his paper, Karst without referring to previous literature actually reaches to the Laplace proposition to solve the one parameter restricted linear model and for the two parameter model, he proposed an algorithm similar to that of Rhodes (1930). His viewpoint is both geometrical and algebraic and no proof of convergence for his iterative method is offered. Sadovski (1974) uses a simple "bubble sort" procedure and implements Karst algorithm in Fortran. Sposito (1976) pointed out that the Sadovski's program may not converge in general. Sposito and Smith (1976) offered another algorithm to remove this problem. Farebrother (1987c) recodes Sadovski's implementation in Pascal language with some improvement such as applying "straight insert sort".

Usow (1967b) presents an algorithm for L_1 norm approximation for discrete data and proves that it converges in a finite number of steps. A similar algorithm on L_1 norm approximation for continuous data is given by Usow (1967a). The Usow's algorithm is to descend on the convex polytope from vertex to vertex along connecting edges of the polytope in such a way that certain intermediate vertices are by-passed. This descent continues until the lowest vertex is reached. (see also, Abdelmalek (1974), Bidabad (1989a,b)).

Relation of this algorithm with simplex method has been discussed by Abdelmalek (1974). He shows that Usow's algorithm is completely equivalent to a dual simplex algorithm applied to a linear
programming model with nonnegative bounded variables, and one iteration in the former is equivalent to one or more iterations in the latter. Bloomfield and Steiger (1980) devise an efficient algorithm based on the proposition of Usow explained above.

Sharpe (1971) by applying the L_1 norm regression to portfolio and its rate of return, gives an algorithm for the two parameter linear regression model it must be possible to assign half of the points above and half below the regression line (see also Bidabad (1989a,b)).

Rao and Srinivasan (1972) interpret Sharpe's procedure as the solution of parametric dual linear programming formulation of the problem. They give an alternate and about equally efficient procedure for solving the same problem. Brown (1980) gives a distinct but similar approach to those of Edgeworth (1923) and Sharpe (1971). He emphasizes on the median properties of the estimator. The similarity comes from graphical approach of the three authors. Kawara (1979) also develops a graphical method for the simple regression model.

Bartels and Conn and Sinclair (1978) apply the method of Conn (1976) to the L_1 norm solution of overdetermined linear system. Their approach is minimization technique for piecewise differentiable functions (see also Bidabad (1989a,b)). This algorithm has also been modified for the case of degeneracy (see also, Bartels and Conn and Sinclair (1976)). Bartels and Conn (1977) showed that how L_1 norm, restricted L_1 norm, L_∞ norm regressions and general linear programming can all be easily expressed as a piecewise linear minimization problem. By some simplifications this algorithm corresponds precisely to the algorithm proposed by Bartels and Conn and Sinclair (1978). The contribution of this paper is putting a wide class of problems in the mould of two algorithms mentioned above. The techniques are easily extended to the models with norm restrictions (see also Bidabad (1989a,b)).

Bloomfield and Steiger (1980) proposed a descent method for the L_1 norm multiple regression. Their algorithm is also explained in Bloomfield and Steiger (1983). In some steps this algorithm is related to that of Singleton (1940) and Usow (1967b). The basis of this method is to search for a set of m observations which locate on the optimal L_1 norm regression. This set is found iteratively by successive improvement. In each iteration one point from the current set is identified as a good prospect for deletion. This point is then replaced by the best alternative. The novel features of this method are in an efficient procedure for finding the optimal replacement and a heuristic method for identifying the point to be deleted from the pivot (see also Bidabad (1989a,b)). In this paper relationship of this algorithm to linear programming is also discussed.

Seneta and Steiger (1984) proposed an algorithm for L_∞ norm solution of slightly overdetermined system of equations. Their proposition is based on the above algorithm of Bloomfield and Steiger. It is more efficient than the former if m is near n.

Seneta (1983) reviews the iterative use of weighted median to estimate the parameters vector in the classical linear model when the fitting criterion is L_1 norm and also Cauchy criterion.

Wesolowsky (1981) presents an algorithm for multiple L_1 norm regression based on the notion of edge descent along the polyhedron of the objective function (see also Bidabad (1989a,b)). This algorithm is closely related to those of Rhodes (1930) and Bartels and Conn and Sinclair (1978) which explained before. Consider the multiple linear regression as before. In this paper Wesolowsky also discusses the problem of multicolinearity and gives an appropriate solution.

Josvanger and Sposito (1983) modify Wesolowsky's algorithm for the two parameter simple linear regression model. The modification is an alternative way to order observations instead of sorting all of them to find the necessary weighted median value. Suppose the problem has been reduced to a weighted median problem. They place smaller values of factors to be sorted with corresponding weights below the current solution point and larger or equal values above it, then recheck the inequalities (16) of weighted median. If the inequalities do not satisfy then an appropriate adjustment is made. In particular, if the right hand side is overly weighted, then the weight corresponding to the smallest sorting factor is transferred to the left hand side, and the check is made again. A computer program for this algorithm is also given by the authors.

"Generalized gradient" method introduced by Clarke (see, Clarke (1983)) is a general procedure for non-smooth optimization functions and problems (see, Osborne and Pruess and Womersley (1986)). A subclass of this method is called "reduced gradient" explained by Osborne (1985) is a general algorithm which contains linear programming, piecewise linear optimization problems and
polyhedral convex function optimization algorithms inside. The reduced gradient algorithm is a special case of descent method which possesses two important characteristics. Identify direction and taking a step in this direction to reduce the function value (see also, Anderson and Osborne (1975), Osborne and Watson (1985) Osborne (1985,87)). The algorithms of Bartels and Conn and Sinclair (1978), Armstrong and Frome and Kung (1979), Bloomfield and Steiger (1980) are all special cases of reduced gradient method.

Imai and Kato and Yamamoto (1987) present a linear time algorithm for computing the two parameter L1n norm linear regression by applying the pruning technique. Since the optimal solution in the a0xa1 plane lies at the intersection of data lines, so, at each step a set of data lines which does not determine the optimum solution are discarded. In this paper algebraic explanation of the problem is also offered.

Pilibossian (1987) also gives an algorithm similar to Karst (1958) for the simple two parameter linear L1n norm regression.

Bidabad (1987a,b,88a,b) proposed a descent methods for the simple and multiple L1n norm regressions. These algorithms with many improvements discussed by Bidabad (1989a,b). Since the algebraic closed form of the L1n norm estimator has not been derived yet, he tried to give some insight to this problem by applying discrete differentiation technique to differentiate the L1n norm objective function. This differentiation on discrete domain variables accompanying with regular differentiation on variables with continuous domains increases our knowledge on the algebraic closed form of the problem. In order to improve the accuracy, speed and generally the efficiency of computation of the L1n norm estimator, he proposed four algorithms which two of them are for simple and others two are for multiple regression models. By inspecting the properties of proposed algorithms, many characteristics of the solution space are clarified. In Bidabad (1989a,b) to find the minimum of the L1n norm objective function of the regression, m-1 points on the polyhedron of the objective function are selected and from this set the mth point is found by descending in steepest direction. Delete an appropriate point and enter the last mth point for next descending step. The procedure is continued until the global minimum is reached. Although, most of the descent methods use a similar procedure, the steps are well organized and modified for the special shape of the L1n norm objective function. In this paper the new convergence theorems related to the proposed algorithms are proved and their properties are discussed.

5.2 Simplex type algorithms

The essence of linear programming in solving L1n norm problem may be found in the work of Edgeworth (1888). Harris (1950) suggested that the L1n norm estimation problem is connected with linear programming. Charnes and Cooper and Ferguson (1955) formulated the problem as linear programming model. This article is the first known to use linear programming for this case. Adaptation of linear programming to L1n norm estimation problem is shown below,

\[
\begin{align*}
\text{min: } & \mathbf{1}_n^T (\mathbf{w} + \mathbf{v}) \\
\text{s.to: } & \mathbf{X}\mathbf{\beta} + \mathbf{1}_n (\mathbf{w} - \mathbf{v}) = \mathbf{y} \\
& \mathbf{w}, \mathbf{v} \geq 0 \\
& \mathbf{\beta} \text{ unrestricted in sign}
\end{align*}
\]

Where \(\mathbf{1}_n \) is a vector of size nx1 of 1’s and \(\mathbf{I}_n \) is a nth order identity matrix. The vectors \(\mathbf{v} \) and \(\mathbf{w} \) are of size nx1 and their elements may be interpreted as vertical deviations above and below the fitted regression hyperplane respectively. This problem has n equality constraints in m+2n variables. When \(n \) is large, this formulation generally requires a large amount of storage and computation time. Wagner (1959) shows that the formulation of the L1n norm regression may be reduced to m equality constraints linear programming problem. Thus, this dual formulation reduces n equations of primal form to m equations of dual form and considerably reduces the storage and computation time.

Fisher (1961) reviews the formulation of the L1n norm estimation in relation with primal form of linear programming. Barrodale and Young (1966) developed a modified simplex algorithm for determining the best fitting function to a set of discrete data under the L1n norm criterion. The method
is given as Algol codes (for critics see, McCormick and Sposito (1975)). Davies (1967) demonstrates the use of the L_1-norm regression estimates. Rabinowitz (1968) also discusses the application of linear programming in this field. Crocker (1969) cautions against using the L_1-norm criterion merely to restrain unwanted negative coefficient estimates which occur in least squares regression. Multicollinearity is one of the cases which causes this result. Robers and Ben-Israel (1969) by using interval linear programming, proposed an algorithm to solve the L_1-norm estimation problem. Rabinowitz (1970), Shanno and Weil (1970) discuss some connections between linear programming and approximation problem. Barrodale (1970) summarizes the linear and nonlinear L_1-norm curve fitting on both continuous and discrete data. Spyropoulos and Kiountouzis and Young (1973) suggest two algorithms for fitting general functions and particularly fast algorithm with minimum storage requirements for fitting polynomials based on the algebraic properties of linear programming formulation. Robers and Rober (1973) have supplied a special version of the general method of Robers and Ben-Israel (1969) which is designed specifically for the L_1-norm problem. A Fortran code is also provided.

Barrodale and Roberts (1973) present a modification of simplex method which needs smaller amount of storage and by skipping over simplex vertices is more efficient than usual simplex procedure. Define the vector \mathbf{B} as a difference of two nonnegative vectors \mathbf{c} and \mathbf{d}, their formulation can be stated as follows,

\[\min: \mathbf{1}_n^T (\mathbf{w} + \mathbf{a}) \]

\[\mathbf{c}, \mathbf{d} \]

\[\text{s.to: } \mathbf{X}(\mathbf{c} - \mathbf{d}) + \mathbf{1}_n (\mathbf{w} - \mathbf{v}) = \mathbf{y} \quad (18) \]

\[\mathbf{w}, \mathbf{v}, \mathbf{c}, \mathbf{d} \geq 0 \]

Because of the relationships among variables, computation can be performed by using only $(n+2)x(m+2)$ amount of array storage, including labels for the basic and non-basic vectors. An initial basis is given by \mathbf{w} if all y_i are nonnegative. If a y_i is negative, sign of the corresponding row is changed and the unit column from the corresponding element of \mathbf{v} is taken as part of the basis. The algorithm is implemented in two stages. First stage restricts the choice of pivotal column during the first m iterations to the vectors elements c_j and d_j recording to the associated maximum nonnegative marginal costs. The vector that leaves the basis causes the maximum decrease in the objective function. Thus the pivot element is not necessarily the same as in the usual simplex. Second stage involves interchanging non basic w_i or v_i with the basic w_i or v_i. The basic vectors corresponding to c_j and d_j are not allowed to leave the basis. The algorithm terminates when all marginal costs are non-positive (see, Kennedy and Gentle (1980)). A Fortran code for this procedure is given by Barrodale and Roberts (1974). Peters and Willms (1983) give algorithms accompanying with computer codes for up-and-down dating the solution of the problem when a column or row inserted to or deleted from \mathbf{X}, or \mathbf{y} is changed. These algorithms are all based on Barrodale and Roberts (1973,74) procedure.

Abdelmalek (1974) describes a dual simplex algorithm for the L_1-norm problem with no use of artificial variables. For this algorithm, the Haar condition (see, Osborne (1985), Moroney (1961)) need not be satisfied anymore. This algorithm seemed to be very efficient at the time of publication. An improved dual simplex algorithm for L_1-norm approximation is proposed by Abdelmalek (1975a). In this algorithm, certain intermediate iterations are skipped and in the case of ill-conditioned problems, the basis matrix can lend itself to triangular factorization and thus ensure stable solution. Abdelmalek (1980a) improves his previous algorithm by using triangular decomposition. A Fortran translation of the algorithm is given by Abdelmalek (1980b). Sposito and McCormick and Kennedy (1978) summarizes much of the works on L_1-norm estimation including problem statement, linear programming formulation, efficient computational algorithms and properties of the estimators.

Armstrong and Kung (1978) propose an algorithm for simple two parameter L_1-norm regression. The method is a specification of linear programming of Barrodale and Roberts (1973) algorithm. A Fortran code is given too.

Armstrong and Frome and Kung (1979) use LU (Lower-Upper triangular) decomposition of Bartels and Golub (1969) in maintaining the current basis on revised simplex procedure. A Fortran translation is also enclosed. Armstrong and Godfrey (1979) show that the primal method of Barrodale
and Roberts (1973) and dual method of Abdelmalek (1975) are essentially equivalent. With a given initial basis for the two methods, they show that, both algorithms will generate corresponding bases at each iteration. The only difference is the choice of initial basis and heuristic rules for breaking ties. Armstrong and Kung (1982b) presents a dual linear programming formulation for the problem. Various basis entry and initialization procedures are considered. It has been shown that the dual approach is superior to primal one if a good dual feasible solution is readily available (see also, Steiger (1980)). Banks and Taylor (1980) suggest a modification of Barrodale and Roberts (1973) algorithm. The objective function is altered to include magnitudes of the elements of the both errors and solution vectors. For a general discussion on simplex piecewise linear programming see Fourer (1985a,b) and for a survey of the corresponding problem on the \(L_1 \) norm see Fourer (1986).

Narula and Wellington (1987) propose an efficient linear programming algorithm to solve the both \(L_1 \) and \(L_p \) norms linear multiple regressions. The algorithm exploits the special structure and similarities between the two problems.

Brennan and Seiford (1987) develop a geometrical interpretation of linear programming in \(L_1 \) norm regression. They give a geometric insight into the solving process in the space of observations. McConnell (1987) shows how the method of vanishing Jacobians which has been used to optimize quadratic programming problems can also be used to solve the special linear programming problem associated with computing linear discrete \(L_1 \) norm approximation. For the possibility of applying other types of linear programming solutions such as Karmarkar solution to \(L_1 \) norm problem see Meketon (1986).

5.3 Other algorithms

This category consists of algorithms which were not classified in the two last sections.

Rice (1964c) applies the bisection method to \(L_1 \) norm regression. In this method at each step the domain of \(S \) is broken to two segments and the appropriate segment is selected for the next iteration. Solution is reached when the last segment is less than a predetermined small value (see, Bidabad (1989) for discussing bisection method).

Abdelmalek (1971) develops an algorithm for fitting functions to discrete data points and solving overdetermined system of linear equations. The procedure is based on determining \(L_1 \) norm solution as the limiting case of \(L_p \) norm approximation when \(p \) tends to one from right in limit. This technique thus obtains a solution to a linear problem by solving a sequence of nonlinear problems.

Schlossmacher (1973) computed the \(L_1 \) norm estimates of regression parameters by an iterative weighted least squares procedure. Instead of minimizing sum of absolute deviations he minimized sum of weighted squared errors with \(1/|u_i| \) as weights. Once least squares is applied to the problem and residuals are computed. The absolute value of the inverse of the residuals are again used as corresponding weights in the next iteration for minimizing the sum of weighted squared errors (see also, Holland and Welsh (1977)). Fair (1974) observed that the estimated values of \(\beta \) did not change after the second or third iterations. In cases where any residual is zero, continuation of procedure is impossible, because the corresponding weight to this residual is infinite. This problem is also discussed by Sposito and Kennedy and Gentle (1977), Soliman and Christensen and Rouhi (1988). Absolute convergence of this algorithm has not been proved, but non-convergent experiment has not been reported.

Soliman and Christensen and Rouhi (1988) used left pseudoinverse (see, Dhrymes (1978) for description of this inverse) to solve the general linear \(L_1 \) norm regression. According to this procedure one should calculate the least squares solution using the left pseudo-inverse or least squares approximation. Calculate the residual vector. Select the \(m \) observations with the smallest absolute values of the residuals and partition the matrices as the selected observations locate on the top and solve \(\beta \) for the top partitions. Although this procedure is operationally simple, its solution is not the same as other exact methods and no proof is presented to show that the solution is in the neighborhood of the exact solution of the \(L_1 \) norm minimization problem.

Application of median polish (see, Tukey (1977)) and \(n \)-median polish to \(L_1 \) norm estimation are discussed and developed by Bloomfield and Steiger (1983), Kemperman (1984), Sposito (1987a), Bradu (1987a,b).

5.4 Initial value problem

It is discussed by many authors how the algorithms should be started. Selection of initial value is an important factor in the execution time of various algorithms. On the other hand, a good starting point leads to the solution faster and reduces number of iterations. There are several papers which consider the problem for the L₁ norm minimization algorithms. Duris and Sreedharan (1968) briefly refers to this problem. McCormick and Sposito (1976) used the least squares estimator to construct an starting point for the algorithm of Barrodale and Roberts (1973). This initial value reduced the number of iterations in most cases. Sposito and Hand and McCormick (1977) show that the total CPU time needed to obtain optimal regression coefficients under the L₁ norm can generally be reduced if one first computes a near-best L₁ norm estimator such as least squares and then solve the modified procedure of Barrodale and Roberts (1973). A similar discussion about L₁ norm estimation is given by Hand and Sposito (1980). Sklar and Armstrong (1982) demonstrate that utilizing the least squares residuals to provide an advanced start for the algorithm of Armstrong and Frome and Kung (1978) results in a significant reduction in computational effort.

5.5 Computer programs and packages

Although many authors have coded the computer programs for their own algorithms, which were referenced before, there are also other packages which solve the L₁ norm regression problem and compute the necessary statistics. Some of these packages are IMSL (see, Rice (1985)); BLINWDR (see, Dutter (1987)); ROBETH and ROBSYS (see, Marazzi (1987), Marazzi and Randriamiharisoa (1985)) and XploRe (see, Hardle (1987)). Since these softwares have their own special characteristics we do not go through the details of them. The interested reader may consult the references.

5.6 Comparison of the algorithms

Generally, the comparison of algorithms is not a straightforward task. As it is indicated by Dutter (1977), factors such as quality of computer codes and computing environment should be considered. In the case of the L₁ norm algorithms, three specific factors of number of observations, number of parameters and the condition of data are more important. Kennedy and Gentle and Sposito (1977a,b), and Hoffman and Shier (1980a,b) describe methods for generating random test data with known L₁ norm solution vectors. Gilsinn et al (1977) discuss a general methodology for comparing the L₁ norm algorithms.

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Compared with</th>
<th>m range</th>
<th>n range</th>
<th>Time performances</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCS</td>
<td>BR</td>
<td>2-8</td>
<td>201</td>
<td>Roughly equal speed</td>
</tr>
<tr>
<td>AFK</td>
<td>BR</td>
<td>5-20</td>
<td>100-1500</td>
<td>30%-50% AFK is faster</td>
</tr>
<tr>
<td>A</td>
<td>BR</td>
<td>1-11</td>
<td>15-203</td>
<td>Nearly equal speed</td>
</tr>
<tr>
<td>BS</td>
<td>BR</td>
<td>2-6</td>
<td>100-1800</td>
<td>BS is faster for larger n</td>
</tr>
<tr>
<td>W</td>
<td>AFK, AK</td>
<td>2-25</td>
<td>100-1800</td>
<td>W is faster for larger n, smaller m</td>
</tr>
<tr>
<td>SS</td>
<td>BS</td>
<td>4-34</td>
<td>10-50</td>
<td>SS is faster for m near n</td>
</tr>
<tr>
<td>B4</td>
<td>AFK, BS, BR</td>
<td>3-10</td>
<td>20-10000</td>
<td>B4 is faster and more accurate; AFK and BS failed in large samples</td>
</tr>
<tr>
<td>AK</td>
<td>S</td>
<td>2</td>
<td>50-500</td>
<td>AK is faster</td>
</tr>
<tr>
<td>JS</td>
<td>AK</td>
<td>2</td>
<td>10-250</td>
<td>JS is faster</td>
</tr>
<tr>
<td>B2</td>
<td>JS</td>
<td>2</td>
<td>20-10000</td>
<td>B2 is faster</td>
</tr>
</tbody>
</table>

n number of observations.
m number of parameters.
Kennedy and Gentle (1977) examine the rounding error of L_1 norm regression and present two techniques for detecting inaccuracies of the computation (see also, Larson and Sameh (1980)). Many authors have compared their own algorithms with those already proposed. Table 1 gives a summary of the characteristics of the algorithms proposed by different authors. It is important to note that since the computing environment and condition of data with respect to distribution of the regression errors of the presented algorithms by table 1 are not the same, definitive conclusion and comparison should not be drawn from this table.

Armstrong and Frome (1976a) compare the iterative weighted least squares of Schlossmacher (1973) with Barrodale and Roberts (1973) algorithm. The result was high superiority of the latter. Anderson and Steiger (1980) compare the algorithms of Bloomfield and Steiger (1980), Bartels and Conn and Sinclair (1978) and Barrodale and Roberts (1973). It was concluded that as number of observations n increases the BR locates in a different complexity class than BCS and BS. All algorithms are linear in number of parameters m, and BS is less complex than BCS. Complexities of BS and BCS are linear in n. There is a slight tendency for all algorithms to work proportionately harder for even m than for odd m. BR and BS had the most difficulty with normal error distribution and the least difficulty with Pareto distribution with corresponding Pareto density parameter equal to 1.2.

Gentle and Narula and Sposito (1987) performs a rather complete comparison among some of the L_1 norm algorithms. They limited this comparison to the codes that are openly available for L_1 norm linear regression of unconstrained form. Table 2 shows the required array storage and stopping constants of the corresponding algorithms and the algorithms of Bidabad (1989a,b). Table 2. Array storage requirement for selected algorithms.

<table>
<thead>
<tr>
<th>Program name</th>
<th>Ref.</th>
<th>Required array storage</th>
<th>Stopping constants</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>BR</td>
<td>3n+m(n+5)+4</td>
<td>BIG=1.0E+75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOLER=10**(-D+2/3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D=No.of decimal digits of accuracy</td>
</tr>
<tr>
<td>L1</td>
<td>A</td>
<td>6n+m(n+3m/2+15/2)</td>
<td>PREC=1.0E-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ESP=1.0E-4</td>
</tr>
<tr>
<td>L1NORM</td>
<td>AFK</td>
<td>6n+m(n+m+5)</td>
<td>ACU=1.0E-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BEG=1.0E+15</td>
</tr>
<tr>
<td>BLAD1</td>
<td>BS</td>
<td>4n+2m(n+2)</td>
<td>--------------------</td>
</tr>
<tr>
<td>BL1</td>
<td>B4</td>
<td>2n+m(3n+m+2)-2</td>
<td>--------------------</td>
</tr>
<tr>
<td>LONESL</td>
<td>S</td>
<td>4n</td>
<td>PREC=1.0E-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BIG=1.0E+19</td>
</tr>
<tr>
<td>SIMLP</td>
<td>AK</td>
<td>4n</td>
<td>ACU=1.0E-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BIG=1.0E+19</td>
</tr>
<tr>
<td>DESL1</td>
<td>JS</td>
<td>5n</td>
<td>TOL=1.0E-6</td>
</tr>
<tr>
<td>BL1S</td>
<td>B2</td>
<td>5n</td>
<td>--------------------</td>
</tr>
</tbody>
</table>

See table 1 for abbreviations.

Sources: Gentle, Narula, Sposito (1987), Bidabad (1989a,b).

They concluded that BS program performs quite well on smaller problems but in larger cases, because of accumulated round-off error it fails to produce correct answers. Increasing the precision of
the coded program to avoid rounding error increases the execution time, so it is not clear what would happen to the relative efficiency of BS after modification.

The Wesolowsky program was not usable and deleted in their study. Because of superiority of AFK to BR and AK to S which had been indicated in previous studies, BR and S algorithm did not enter in their study. Gentle and Sposito and Narula (1988) also compare the algorithms for unconstrained L1 norm simple linear regression. This investigation is essentially an extraction of Gentle and Narula and Sposito (1987). The attained results are completely similar.

Bidabad (1989a,b) compare the algorithm B2 with JS and B4 with the algorithms of AFK, BS and BR. He concludes that B2 is faster than JS and B4 is faster for smaller m and accurate for larger n. He also observed the failure of AFK and BS for larger problems.

5.7 Nonlinear form computational methods

Suppose again \(y, X, u \) and \(\beta \) are defined as before. In nonlinear L1 norm regression, the problem is to estimate \(\beta \) vector in the nonlinear model,

\[
y_i = f_i(x_i, \beta) + u_i \quad i=1,...,n; \quad n \geq m
\]

Where \(f_i \) is the response function and \(x_i \) is the \(i^{th} \) row of \(X \). L1 norm regression parameters are derived by minimizing the following sum:

\[
\min_{\beta} \sum_{i=1}^{n} |y_i - f_i(x_i, \beta)|
\]

(20)

The function (20) can be reformulated as a nonlinear programming problem as,

\[
\min_{\beta} \sum_{i=1}^{n} w_i
\]

s.to:

\[
\begin{align*}
y_i - f_i(x_i, \beta) - w_i & \leq 0 \\
-y_i + f_i(x_i, \beta) - w_i & \leq 0 \\
w_i & \geq 0 \\
i = 1, ..., n
\end{align*}
\]

(21)

Over the last three decades numerous algorithms have been proposed for solving the nonlinear L1 norm regression problem. These methods can be classified into the following three main categories (see, Gonin and Money (1987b); for another categorization see Watson (1986), McLean and Watson (1980)).

The first category consists of the methods using only first order derivative. In these algorithms the original nonlinear problem is reduced to a sequence of linear L1 norm problems, which each of them can be solved efficiently by standard linear programming procedures. These methods are of the Gauss-Newton type. The main algorithms which fall into this category have been presented by authors like Osborne and Watson (1971), Anderson and Osborne (1977a,b), Shrager and Hill (1980), McLean and Watson (1980), Jittorntrum and Osborne (1980), Osborne (1980), Watson (1980,84a), Bartels and Conn (1982), Hald and Madsen (1985).

The second category consists of methods which by using second order derivative, transform the original problem into a sequence of unconstrained minimization problems. The non differentiability of the objective function is then overcome. This procedure is known as the penalty function method of nonlinear programming. The contributors are El-attar and Vidyasagar and Dutta (1979), Fletcher (1981,84), Tishler and Zang (1982), Conn (1984), Conn and Gould (1987).

In the last category the objective function is linearized but quadratic approximations are incorporated to take curvature effects into account (see, Murray and Overton (1981), Overton (1982), Bartels and Conn (1982)).

5.8 L_p norm computation

Suppose our linear regression model of the form discussed before. The L_p norm estimation of \(\beta \) may be found by minimizing sum of the p\(^{th}\) power of the absolute values of the errors. That is,

\[
\min_{\beta} \sum_{i=1}^{n} \left| y_i - \sum_{j=1}^{m} \beta_j x_{ij} \right|^p
\]

(22)

The above problem can be reformulated as a mathematical programming problem. Rewrite the error vector as difference of two nonnegative vectors \(w \) and \(v \) which present positive and negative deviations respectively. That is \(u = w - v; w,v \geq 0 \). The L_p norm approximation problem reduces as follows (see, Kiountouzis (1972)),

\[
\min_{w,v} \sum_{i=1}^{n} (w_i^p + v_i^p)
\]

s.to: \(w_i - v_i + \sum_{j=1}^{m} \beta_j x_{ij} = y_i \)

\(w_i, v_i \geq 0 \)

\(\beta_j \) unrestricted in sign

\(i=1,\ldots,n; j=1,\ldots,m \)

(23)

It should be noted that this formulation is extremely flexible as it allows that any other constraint to be added (see, Money and Affleck-Graves and Hart (1978)). Another nice specification is that we can change the model to nonlinear form by removing the summation term in the first n constraints and inserting \(f_j(x_i,\beta) \) instead. That is,

\[
\min_{w,v} \sum_{i=1}^{n} (w_i^p + v_i^p)
\]

s.to: \(w_i - v_i + f_j(x_i,\beta) = y_i \)

\(w_i, v_i \geq 0 \)

\(\beta_j \) unrestricted in sign

\(i=1,\ldots,n; j=1,\ldots,m \)

(24)

The resultant is the formulation of nonlinear L_p norm estimation problem.

In the case of L_\infty norm solution of overdetermined system of equations, there are similar methods as well (for more information, interested readers may see the following selected articles and also their references, Kelley (1958), Goldstein and Cheney (1958), Cheney and Goldstein (1958), Stiefel (1960), Veidinger (1960), Valentine and Van Dine (1963), Aoki (1965), Osborne and Watson (1967), Bartels and Golub (1968a,b), Gustafson and Kortanek and Rom (1970), Barrodale and Powell and Roberts (1972), Cline (1972,76), Duris and Temple (1973), Watson (1973), Barrodale and Phillips (1974,75), Boggs (1974), Fletcher and Grant and Hebden (1974a), Madsen (1975), Abdelmalek (1975b,76,77a,b), Conn (1975), Coleman (1978), Charalambs and Conn (1978),
6. Simultaneous equations system

The L_1 norm estimation has been extensively studied for single equation regression model and its properties are well recognized. But despite of the wide variety of econometric applications of L_1 norm estimation to simultaneous equation systems, there have been only few investigators in this area which their works are summarized in this section. Suppose the following equation as a first equation of a structural system,

$$y = Y\theta + X_1\beta + u = [Y|X_1] \begin{bmatrix} \theta \\ \beta \end{bmatrix} + u \equiv Z\alpha + u$$ \hspace{1cm} (25)

Where y is a vector of dependent endogenous, Y, matrix of independent endogenous, X_1, matrix of exogenous variables; θ and β are vectors of regression parameters and u is random error vector. The reduced form for Y is given by,

$$Y = X\Pi + v$$ \hspace{1cm} (26)

Direct and indirect least absolute deviations (DLAD, IDLAD) analogues of direct and indirect least squares (DLS, IDLS) may be applied to the systems (25) and (26) respectively. The L_1 norm objective function analogue of two stage least squares (2SLS) for estimation of α may be defined as,

$$\begin{array}{ll}
n & \text{min:} \sum_{i=1}^{n} |y_i - P_1^T z\alpha | \\
\alpha & \text{ } \\
\end{array}$$ \hspace{1cm} (27)

Where y_i is the i^{th} element of y, P_1^T is the i^{th} row of $P=(X^TX)^{-1}X^T$ (see, Fair (1974)). Amemiya (1982) by comparing the problem (27) with Theil's interpretation of 2SLS,

$$\begin{array}{ll}
n & \text{min:} \sum_{i=1}^{n} (y_i - P_1^T z\alpha)^2 \\
\alpha & \text{ } \\
\end{array}$$ \hspace{1cm} (28)

and interpretation of 2SLS as the instrumental variables estimator, namely, the minimization of,

$$\begin{array}{ll}
n & \text{min:} \sum_{i=1}^{n} (P_1^T y - P_1^T z\alpha)^2 \\
\alpha & \text{ } \\
\end{array}$$ \hspace{1cm} (29)

defines two stage least absolute deviations (2SLAD) as,

$$\begin{array}{ll}
n & \text{min:} \sum_{i=1}^{n} |P_1^T y - P_1^T z\alpha | \\
\alpha & \text{ } \\
\end{array}$$ \hspace{1cm} (30)

Amemiya (1982) combines the two ideas and proposes 2SLAD as a class of estimators obtained by minimizing,

$$\begin{array}{ll}
n & \text{min:} \sum_{i=1}^{n} |qP_1^T y + (1-q)P_1^T z\alpha | \\
\alpha & \text{ } \\
\end{array}$$ \hspace{1cm} (31)

Where, q is a parameter to be determined by researcher. When $q=0$, problem (31) is equivalent to (30) and yields the estimator which is asymptotically equivalent to 2SLS. When $q=1$ then (31) is equivalent to (27). For any value of $q\in[0,\infty)$ Amemiya (1982) proves the strong consistency of 2SLAD and gives its asymptotic variance under three different cases of normal, partially normal and non normal distribution of u and v. Powell (1983) demonstrates the asymptotic normality of Amemiya (1982) proposed estimators for more general distributions of error terms.

Amemiya (1982) also proposes another alternative LAD analogue of 2SLS. Once IDLAD is applied to each equation of reduced form and Π^\wedge is computed. Then by minimizing the following expression,
\[
\min: \Sigma \left| y_i - x_{i1}^T \theta - x_{i1}^T \beta \right|
\]

(32)

\(\theta^e\) and \(\beta^e\) are derived. He calls this estimator double two stage least absolute deviations (D2SLAD). A similar discussion for different values of \(q\) has also been done. Powell (1983) shows an asymptotic equivalence proposition for the sub-class of D2SLAD estimators. This result is analogous to the finite sample equivalence of Theil’s interpretation of 2SLS, and its instrumental variable interpretation.

Glahe and Hunt (1970) as pioneers of introducing \(L_1\) norm in simultaneous system of equations, compare small sample properties of least absolutes and least squares estimators for an overidentified simultaneous system of two equations via Monte Carlo experiments. Estimators where used are DLAD, DLS, IDLAD, IDLS, 2SLAD and 2SLS. All comparisons were done for all three pairs of direct, indirect and two stage least absolute and least squares estimators for different sample sizes of ten and twenty with considering various cases of multicolinearity, heteroskedasticity and misspecification. They concluded that the \(L_1\) norm estimators should prove equal or superior to the \(L_2\) norm estimators for models using a structure similar to that of their study, with very small sample sizes and randomly distributed errors.

The same structure is used by Hunt and Dowling and Glahe (1974) with Laplace and normal error distributions. The estimators in their study are DLAD, DLS, 2SLAD and 2SLS. They concluded that the \(L_1\) norm estimators provided 100% of the best results in the case of Laplace distribution, and 37.5% of the best results in the case of normal distribution of errors.

Nyquist and Westlund (1977) performs a similar study with an overidentified three equations simultaneous system with error terms obeying symmetric stable distributions. The estimators used in this study were similar to those of Glahe and Hunt (1970) mentioned above. They concluded that with normal distribution, \(L_2\) norm estimators are favorable. In non normal case \(L_1\) norm estimators tend to perform better as the degree of non normality increases. When sample size increases, the relative performance of 2SLAD to DLS is increased too. In the normal distribution case 2SLS is the best, and for non normal distributions 2SLAD is the leading alternative closely followed by IDLAD and for extremely non normal cases IDLAD seems to be more robust than 2SLAD.

7. Statistical aspects

Since, the \(L_1\) norm criterion has discovered many interesting extension in statistics, this section has a glance at some of its features on the various fields of statistics.

7.1 Sampling distribution

Ashar and Wallace (1963), Rice and White (1964), Meyer and Glauber (1964), Glahe and Hunt (1970), Fama and Roll (1971), Smith and Hall (1972), Kiountouzis (1973), Brecht (1976), Ramsay (1977), Hill and Holland (1977), Rosenberg and Carlson (1977), Pfaffenberger and Dinkel (1978) have examined small sample properties of \(L_1\) norm fitting via Monte Carlo method in different conditions. The relative efficiency of this estimator to least squares is occurred if errors distribution has big tails.

Wilson (1978) concludes that \(L_1\) norm estimator is 80% as efficient as least squares when errors follow contaminated normal distribution. When outliers are present, \(L_1\) norm estimator becomes more efficient. His approach is Monte Carlo too and a wide variety of experiments are examined.

Cogger (1979) performed ex-post comparisons between \(L_1\) and \(L_2\) norms forecasts from Box-Jenkins autoregressive time series models. The comparisons indicated that \(L_1\) norm approaches to the estimation of ARIMA (integrated autoregression moving average) models of time series data should receive further attention in practice.

For multivariate regression with a symmetric disturbance term distribution, Rosenberg and Carlson (1973) showed that the error in the \(L_1\) norm estimation is approximately, normally distributed with mean zero and variance covariance matrix \(\delta^2 (X^T X)^{-1}\), where, \(\delta^2 / n\) is the variance of the median of errors (see also, Sposito and Tvejte (1984), Ronner (1984)). They concluded that, the \(L_1\) norm estimates have smaller variance than least squares in regression with high kurtosis error distribution (see also, Bloomfield and Steiger (1983)).
Sielken and Hartley (1973), Farebrother (1985) have shown that when the errors follow a symmetric distribution, and the \(L_1 \) norm estimates may not be unique, the problem may be formulated in such a way as to yield unbiased estimators. A similar discussion for general \(L_p \) norm may be found in Sposito (1982).

Bassett and Koenker (1978) showed that the \(L_1 \) norm estimates of regression parameters in general linear model are consistent and asymptotically Gaussian with covariance matrix \(\hat{\sigma}^2 (X^TX)^{-1} \), where \(\hat{\sigma}^2/n \) is the asymptotic variance of the sample median from random samples of size \(n \) taken from the error distribution (see, Bassett and Koenker (1982), Koenker and Bassett (1984), Bloomfield and Steiger (1983), Oberhofer (1982), Wu (1988). A simple approximation method for computing the bias and skewness of the \(L_1 \) norm estimates is given by Withers (1987) which shows that bias and skewness of \(\beta^* \) are proportional to the 3rd moments of independent variables. The moment problem in the \(L_1 \) norm is discussed by Hobby and Rice (1965).

Dupacova (1987a,b) used the tools of nondifferentiable calculus and epi-convergence to find the asymptotic properties of restricted \(L_1 \) norm estimates. Asymptotic interesting properties of Boscovich's estimator which is \(L_1 \) norm minimization of errors subject to zero mean of residuals constraint may be found in Koenker and Bassett (1985). \(L_1 \) norm fit for censored regression (or censored "Tobit") models has been introduced by Powell (1984,86). Paarsch (1984) by Monte Carlo experiments showed that the Powell estimator is neither accurate nor stable.

Gross and Steiger (1979) used an \(L_1 \) norm analogue of \(L_2 \) norm estimator for the parameters of stationary, finite order autoregressions. This estimator has been shown to be strongly consistent. Their evidences are based on Monte Carlo experiments (see also, Bloomfield and Steiger (1983) for more discussions).

7.2 Statistical inference

The asymptotic distribution of the three \(L_1 \) norm statistics (Wald, likelihood ratio and Lagrange multiplier tests) of linear hypothesis for general linear model have been discussed in Koenker and Bassett (1982a). They derived the asymptotic distribution for a large class of distributions. It has been shown that these tests under mild regularity conditions on design and error distribution have the same limiting chi-square behavior. Comparison of these tests based on Monte Carlo experiments is given in Koenker (1987). Since the \(L_1 \) norm estimator asymptotically follows a normal distribution, Stangenhaus and Narula (1987) by using Monte Carlo method determined the sample size at which normal distribution approximation can be used to construct the confidence intervals and test of hypothesis on the parameters of the \(L_1 \) norm regression. Comparison methods for studentizing the sample median which can be extended to \(L_1 \) norm regression is discussed by McKeane and Sheather (1984); and accordingly, testing and confidence intervals are compared by Sheather and McKeane (1987).

7.3 Multivariate statistics

In usual clustering method, Euclidian metric or distance as an appropriate real valued function for constructing dissimilarity criterion is used (see also, Bidabad (1983a)). Spath (1976) used \(L_1 \) metric as a criterion for clustering problem. More modification and extension may be found in Spath (1987). Kaufman and Rousseeuw (1987) introduced an \(L_1 \) norm type alternative approach, used in k-medoid method, that minimizes the average dissimilarity of the all objects of the data set to the nearest medoid. Trauwaert (1987) and Jajuga (1987) applied the \(L_1 \) metric in fuzzy clustering method of ISODATA (Iterative Self Organizing Data Analysis Technique (A)). Trauwaert (1987) showed that in the presence of outliers or data errors, \(L_1 \) metric has superiority over \(L_2 \) distance.

7.4 Nonparametric density estimation

L_1 norm has also been used in nonparametric statistics and density estimation. The procedure of density estimation is done via the Parzen kernel function. Abou-Jaoude (1976a,b,c), Devroye and Wagner (1979,80) give the conditions for the L_1^p norm convergence of kernel density estimates. Devroye (1983,85) gives the complete characterization of the L_1^p norm consistency of Parzen-Rosenblatt density estimate. Devroye concludes that all types of the L_1 norm consistencies are equivalent. Gyorfi (1987) proves the L_1^p norm consistency of kernel and histogram density estimates for uniformly and strong mixing samples. Devroye and Gyorfi (1985) give a complete explanation of the L_1^p norm nonparametric density estimation. The central limit theorems of L_p norms for kernel estimators of density and their asymptotic normality in different conditions of unweighted and weighted L_p norm of naive estimators, and under random censorship are discussed in Csorgo and Horvath (1987,88), Horvath (1987), Csorgo and Gombay and Horvath (1987). Bandwidth selection in nonparametric regression estimation is shown by Marron (1987). Via an example he concludes that it is an smoothing problem. Welsh (1987) considers simple L_1^p norm kernel estimator of the sparsity function and investigates its asymptotic properties. L_1^p and L_2 norms cross-validation criteria are studied for a wide class of kernel estimators by Rossi and Brunk (1987,88). Gyorfi and Van der Meulen (1987) investigate the density-free convergence properties of various estimators of Shannon entropy and prove their L_1^p norm consistency. Munoz Perez and Fernandez Palacin (1987) consider the estimating of the quantile function by using Bernstein polynomials and examine its large sample behavior in the L_1^p norm. For comparison of the L_1^p and L_2 norms estimators of Weibull parameters see Lawrence and Shier (1981) and for a nonparametric approach on quantile regression see Lejeune and Sarda (1988).

7.5 Robust statistics

One of the most important properties of the L_1^p norm methods is resistivity to outliers or wild points. This property makes it one of the most important techniques of robust statistics. Huber (1987) pointed out that the L_1^p norm method serves in two main areas of robust estimation. Sample median plays an important role in robust statistics. The sample median is the simplest example of an estimate derived by minimizing the L_1^p norm of deviations. Thus, L_1^p norm minimizes the maximum asymptotic bias that can be caused by asymmetric contamination. Therefore, it is the robust estimate of choice in cases where it is more important to control bias than variance of the estimate. Next, the L_1^p norm method is the simplest existing high-breakdown estimator. Thus it can be a good starting point for iterative estimators which give nonsense solution if they started with a bad initial point and since it is resistant to outliers, may be used as an starting point for trimming the wild points (see also, Taylor (1974), Holland and Welsch (1977), Harvey (1977,78), Armstrong and Frome and Sklar (1980), Antoch et al (1986), Antoch (1987), Portnoy (1987), Bassett (1988b)). This technique for polynomial regression with a test about the degree of polynomial and for regression quantiles is considered in Jureckova (1983,84), Jureckova and Sen (1984). The same thing for nonlinear regression is devised by Prochazka (1988). Ronchetti (1987) reviews the basic concepts of robust statistics based on influence function and also in relation with L_1^p norm (see also GaLpin (1986)). For computational algorithms in bounded influence regression see Marazzi (1988). Ekblom (1974) discusses the statistical goodness of different methods when applied to regression problem via Monte Carlo experiments and in Ekblom (1987) he shows the relationship of L_1^p norm estimate as limiting case of an L_p norm or Huber estimates. Haussler (1984) and Watson (1985a) considered the robust L_p norm discrimination analysis problem. Robust estimates of principal components (see, Bidabad (1983c)) based on the L_1^p norm formulation are discussed by GaLpin and Hawkins (1987). The asymptotic distributional risk properties of pre-test and shrinkage L_1^p norm estimators are considered by Saleh and Sen (1987). L_1^p norm estimator is also a member of M and R estimators (see, Bloomfield and Steiger (1983) for more discussions).
8. Application

L_1 norm methods has been extensively developed in various fields of sciences and work as strong analytical tools in analyzing human and natural phenomena. Many branches of sciences in applied mathematics, statistics and data analysis like econometrics, biometrics, psychometrics, sociometrics, technometrics, operation research, management, physic, chemistry, astronomy, medicine, industry, engineering, geography and so forth are heavily dependent to this method.

The assumption of normally distributed errors does not always hold for economic variables as well as other data and variables and so we are not confronted with finite variance anywhere. An infinite variance means thick tail errors distribution with a lot of outliers. Since least squares gives a lot of weights to outliers, it becomes extremely sample dependent. Thus in this case least squares becomes a poor estimator. Of course, the observed distributions of economic or social variables will never display infinite variances. However, as discussed by Mandelbrot (1961,63) and herein before, the important issue is not that the second moment of the distribution is actually infinite, but the interdecile range in relation to the interquartile range is sufficiently large that one is justified in acting as though the variance is infinite. Thus, in this context, an estimator which gives relatively little weight to outliers, such as L_1 norm estimator is clearly preferred.

Distribution of personal income has been known to have this characteristic since the time of Pareto -1896. Ganger and Orr (1972) give some evidences on time series characteristics of economic variables which have this property. Many other economic variables such as security returns, speculative prices, stock and commodity prices, employment, asset sizes of business firms, demand equations, interest rate, treasury cash flows, insurance and price expectations all fall in the category of infinite variance error distribution (see, Goldfeld and Quandt (1981), Nyquist and Westlund (1977), Fama (1965), Sharpe (1971)).

Arrow and Hoffenberg (1959) used L_1 norm in the context of interindustry demand. Meyer and Glauber (1964) compare L_1 and L_2 norms directly. They estimated their investment models on a sample by both estimators and then examined them by forecasting ex-post sample. They concluded that, with very few exceptions, the L_1 norm estimation outperformed the L_2 norm estimators, even with criteria such as sum of the squared forecast errors which least squares is ordinarily thought to be minimal. Sharpe (1971) compares L_1 and L_2 norms estimators for securities and portfolios. A similar discussion has been given by Cornell and Dietrich (1978) on capital budgeting. Affleck-Graves and Money and Carter () did the same research by applying L_p norm and with emphasis on factors affecting the estimation of coefficients of an individual security model. Kaergard (1987) compares L_1, L_2 and L_p norms estimators for Danish investments via their power to predict the even years from estimation over odd years for a long period. Hattenschwiler (1988) uses goal programming technique in relation with L_1 norm smoothing functions on several large disaggregate linear programming models for Switzerland food security policy (see, Bidabad (1984a) for description of goal programming relevance). Other applications of the L_1 norm smoothing functions on the models for planning alimentary self-sufficiency, food rationing and flux- and balancing model for feeding stuffs are referenced by Hattenschwiler (1988).

Wilson (1979) used L_1 norm regression for statistical cost estimation in a transport context. Chisman (1966) used L_1 norm estimator to determine standard times for jobs in which work-elements are essentially the same for all jobs except that the quality of each type of the work-element used may vary among jobs. Frome and Armstrong (1977) refer to this estimator for estimating the trend-cycle component of an economic time series.

Charnes and Cooper and Ferguson (1955) give optimal estimation of executive compensation of employees by solving L_1 norm problem via the technique of linear programming. Application of the L_1 norm in location theory is of special interest; because by this metric the rectangular distance of two points in two dimensional Cartesian coordinates can be considered very well (see, Cabot et al (1970), Wesolowsky and Love (1971,72), Drezner and Wesolowsky (1978), Ratliff and Picard (1978), Morris and Verdini (1979), Megiddo and Tamir (1983), Calamai and Conn (1987); see also, the bibliography of Domschke and Drext (1984)). Farebrother (1987a) applies L_1 norm to committee decision theory. Mitchell (1987) uses L_1 norm to find a shortest path for a robot to move among obstacles. L_1 norm has been applied to chemistry by Fausett and Weber (1978); in geophysics by Dougherty and Smith

9. Other variants

Narula and Wellington (1977a) propose the minimization of sum of weighted absolute errors. That is, minimizing the expression \(\sum w_i |u_i| \). An algorithm for this problem is introduced. Narula and Wellington (1977b) proposed a special case of the above formulation by the name, "minimum sum of relative errors". In this problem \(w_i \) are set equal to \(1/|y_i| \) (see also comment of Steiger and Bloomfield (1980)).

Narula and Wellington (1977c) give an algorithm for \(L_1 \) norm regression when the model is restricted to pass through the means of each of the variables (see, Farebrother (1987c) for a remark). In the case of restricted \(L_1 \) norm estimation some algorithms presented by Young (1971), Armstrong and Hultz (1977), Barrodale and Roberts (1977,78), Bartels and Conn (1980a,b), Armstrong and Kung (1980). An algorithm for \(L_1 \) norm regression with dummy variables is given by Armstrong and Frome (1977). Womersley (1986) introduces a reduced gradient algorithm for censored linear \(L_1 \) norm regression.

In the context of stepwise regression and variable selection, there are also special algorithms for the case of \(L_1 \) norm (see, Roodman (1974), Gentle and Hansen (1977), Narula and Wellington (1979,83), Wellington and Narula (1981), Dinkel and Pfaffenberger (1981), Armstrong and Kung (1982a)).

An algorithm for regression quantiles is given by Narula and Wellington (1984). Computation of best one-sided \(L_1 \) norm regression, that is finding an approximation function which is everywhere below or above the function is given by Lewis (1970). For numerical techniques to find estimates which minimize the upper bound of absolute deviations see Gaivoronski (1987).

Arthanari and Dodge (1981) proposed a convex combination of \(L_1 \) and \(L_2 \) norms objective functions to find new estimator for linear regression model. Dodge (1984) extends this procedure to a convex combination of Huber M-estimator and \(L_1 \) norm estimator objective functions. Dodge and Jureckova (1987) showed that the pertaining convex combination of \(L_1 \) and \(L_2 \) norms estimates can be adapted in such a way that it minimizes a consistent estimator of the asymptotic variance of the new produced estimator. In Dodge and Jureckova (1988) it is discussed that the adaptive combination of M-estimator and \(L_1 \) norm estimator could be selected in an optimal way to achieve the minimum possible asymptotic variance.

Instead of minimizing the absolute deviations, Nyquist (1988) minimized absolute orthogonal deviations from the regression line. In this paper, computational aspects of this estimator is considered and a connection to the projection pursuit approach to estimation of multivariate dispersion is pointed out. Spath and Watson (1987) also introduce orthogonal linear \(L_1 \) norm approximation method. Application of orthogonal distance criterion for \(L_2 \) and general \(L_p \) norms may be found in Spath (1982,86b), Watson (1982b), Wulff (1983).

Rousseeuw (1984) proposes a new method of estimation called by "least median of squares" regression. This estimator is derived by minimizing the expression, \(\text{med}(|u_i|^2) \) fou \(B \). The resulting estimator can resist the effect of nearly 50% of contamination in the data. For an applied book on this topic see Rousseeuw and Leroy (1987). Computational algorithms of this estimator may be found in Souvaine and Steele (1987), Steele and Steiger (1986).

When the number of observations in comparison with the number of unknowns is large, it ought to be better to split the observations into some unknown clusters and look for corresponding regression vectors such that the average sum of the \(L_p \) norm of the residual vector attains a minimum. This combination of clustering and regression is called clusterwise regression. A case study and numerical comparison for clusterwise linear \(L_1 \) and \(L_2 \) norms regressions are given by Spath (1986a).
For clusterwise linear L_1 norm regression algorithms see Spath (1986c), Meier (1987), and for presentation of clusterwise regression see Spath (1985,87).

Application of the L_{∞} norm to one and two-way tables is given by Armstrong and Frome (1976b,79), Buckley and Kvanli (1981) (see also, Bloomfield and Steiger (1983) for general discussions).

10. Bibliography

- J.F. Affleck-Graves, A.H. Money, K. Carter () An evaluation of an alternative methods of estimating the beta coefficient in the market model. Univ. of CapeTown, South Africa.
• R.H. Bartels, G.H. Golub (1968b) Stable numerical methods for obtaining the Chebyshev solution to an overdetermined system of equations, Comm. ACM, 11, 401-406.
• G.W. Bassett, Jr. (1988a) A property of the observations fit by the extreme regression quantiles. CSDA, 6(3), 297-304.
• G.W. Bassett, Jr. (1988b) A property of the observations fit by the extreme regression quantiles. CSDA, 6(4), 353-360.
• J. Bejar (1956) Regression en mediana y la programacion lineal, Trabajos de Estadistica 7, 141-58.
• J. Bejar (1957) Calcolo pratico de la regresion en mediana Trabajos de Estadistica, 8, 157-173.
• B. Bidabad (1984a) Goal programming, optimal decision process with different priorities and its computer program. Plan and Budget
B. Bidabad (1984b) Determining industrial location for 1992 by using goal programming method. Plan and Budget Ministry, Tehran, Iran.

B. Bidabad (1984c) Zero-one programming, optimal decision making with bivalent variables and its computer program. Plan and Budget ministry, Tehran, Iran.

B. Bidabad (1987a) Least absolute error estimation. Submitted to the First International Conference on Statistical Data Analysis Based on the L_1-norm and Related Methods, Neuchatel, Switzerland.

B. Bidabad (1987b) Least absolute error estimation, part II. Submitted to the First International Conference on Statistical Data Analysis Based on the L_1-norm and Related Methods, Neuchatel, Switzerland.

C. Bruen (1938) Methods for the combination of observations modal points or most lesser-deviations, mean loci or least squares, and mid point of least range or least greatest-deviation. Metron 13, 61-140.

• T. Dielman, R.C. Pfaffenberger (1984-26) Dept. of Comp. Sci., Univ. of Waterloo, Ontario, Canada.
• F.Y. Edgeworth (1887a) On observations relating to several quantities. Hermathena, 6, 279-285.
• F.Y. Edgeworth (1887b) A new method of reducing observations relating to several quantities. Philosophical Magazine, 24, 222-223.
• F.Y. Edgeworth (1923) On the use of medians for reducing observations relating to several quantities. Philosophical Magazine, 6th series, 46, 1074-1088.

A.B. Forsythe (1972) Robust estimation of straight line regression coefficients by minimizing pth power deviations. Technometrics, 14, 159-166.

• Lazarski (1975c) On the necessary conditions of the uniqueness of approximation by the polynomials of power functions in Lf-space. Automatika, 487, 107-117.

• Lazarski (1977) Approximation of continuous functions by exponential polynomials in the Lf-space. Automatika, 598, 82-87.

• M.G. Lejeune, P. Sarda (1988) Quantile regression: a non parametric approach. CSDA, 6(3) 229-240.

